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Some properties of two-dimensional inverse energy cascade dynamics
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In this work we analyze the degree of homogeneity and stationarity of the transfers in the inverse energy
cascade of two-dimensional turbulence. Two extreme cases, namely, a well-developed inverse energy cascade
in a robust statistically steady state and the collision of two vortices of the same sign, which is a clear
illustration of a nonstationary cascade regime, are studied. We consider the absolute transferhl at scalel
produced by the nonlinear term of the Navier-Stokes equation. The scaling properties of the transfer hierarchy
^h l

p11&/^h l
p&; l2dp are examined. We defineD5(d`2d0)/z3* , wherez3* is the scaling of the third-order

structure function of absolute velocity increments,d0 is a quantity tracing the smallest but most frequent
transfers, andd` characterizes the largest but rarest transfers. We show thatD plays a fundamental role in the
scaling description of the cascade dynamics. In two-dimensional energy cascade, the important property of the
relationship between the scaling of the structure functions and the distribution of the heterogeneities in the
physical space given by~d`2d0! is the invariance ofD. Finally, we determine the physical meaning of the
formally introduced adjustable parameters in She-Leveque@Phys. Rev. Lett.72, 336 ~1994!# and Dubrulle
@Phys Rev. Lett.73, 7 ~1994!; 73, 959 ~1994!# intermittency models.@S1063-651X~97!11902-X#

PACS number~s!: 47.27.2i
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I. INTRODUCTION

It is well known that in the inviscid limit as well as in
statistically steady state, the two-dimensional~2D! Navier-
Stokes equation is characterized by a family of integral c
straints very different from the 3D situation. Basic quadra
invariants in 2D are the kinetic energy and the mean vortic
square~enstrophy!. They are both transferred via nonline
terms in the Navier-Stokes equation from one scale to
other following Kolmogorov-Kraichnan’s cascade scenar
a direct enstrophy cascade from injection scales toward s
dissipative scales, and an inverse energy cascade to
large scales. However, many theoretical and numerical s
ies @1–5# tend to support the idea that the description
two-dimensional turbulence is not achieved according to
phenomenological theory suggested by Kolmogorov@6,7#.
Two-dimensional turbulence can be considered as the sy
tic result of a complex distortion process of the velocity fie
caused and maintained by the carrying power of lo
lifetime coherent structures. The dynamical behavior of tw
dimensional turbulence strongly depends on the distribu
of coherent vortices, their generation processes, and the
bility of their interactions. The phenomenological descripti
of such dynamics remains an open question.

In numerical simulations of two-dimensional turbulenc
the relatively large fluctuation of the observed spectral
haviors from one numerical experiment to another, depe
ing on the nature and location of the forcing and dissipati
tend to support the existence of nonuniversal distribution
the active structures participating in the transfers. In ot
words, for insufficient Reynolds numbers, homogeneity a
stationarity is not achieved for relative large scales in
inertial range in which the probability distribution for th
velocity increment~structure functions! depend on the large
551063-651X/97/55~3!/2693~14!/$10.00
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scale motion and the dissipation. In these situations—thi
often the case in practice e.g., in geophysics—, the con
of a local ‘‘homogeneous and stationary continuous iner
cascade’’ is not straightforwardly established. An interest
issue, therefore, is to investigate the degree of universalit
the transfer dynamics in these cases.

In a recent work@8# we partially analyzed this problem
through the investigation of the scaling properties of stati
cally steady incompressible 2D turbulence using the in
mittency model proposed by Dubrulle@9#. This model is a
modified version of the model of She and Leveque@10# for
3D turbulence. The modification in Dubrulle’s approa
takes into account the original idea proposed by Benziet al.
@11#. This idea, called ‘‘extended self-similarity’’~hereafter
ESS! is to consider the scaling of velocity structure functio
under the form

^udv l up&}^udv l us&zp /zs ~1!

for all p ands. It generalizes the self-similar scaling of th
pth-order moment of the velocity incrementdv l at scalel ,

^dv l
p&} l zp. ~2!

Experimental investigation of relation~1! in 3D turbulence
shows that the relative exponentzp/zs tends to be a scale
independent quantity in the inertial range, even if the ab
lute exponentszp and zs may depend onl , for example, at
low Reynolds number@12#. In @11#, the authors concluded
that ESS may be ‘‘more fundamental than the self-sim
scaling with respect tol usually observed at very high Rey
nolds numbers.’’ From a theoretical point of view, ES
therefore opens possibilities regarding the interpretation
the definition of an ‘‘inertial range.’’ An inertial range is
physically defined as a range of scales where both the for
2693 © 1997 The American Physical Society



m
th
ila
on

al
po
na
a
It
tu
ith

c
low
n
um
th
in
O
a

d
S

av
tu
r
it

d
ed
th

s-
d

ng
g
al

t
t
ld
om
a
o
e
f
he
e
e

er
l
o
h
e
re
lit
et

in

a

ents.
es

de-
tur-

he

ion-
cade
to

of

2694 55BABIANO, DUBRULLE, AND FRICK
and the dissipation process are irrelevant. In isotropic ho
geneous situations, this implies self-similar scaling of
third-order structure function, and by extension, self-sim
scaling of all structure functions. Since neither dissipati
nor forcing explicitly appear in ESS relations like Eq.~1!, it
could be used for definition of a ‘‘generalized inerti
range,’’ and therefore enable the definition of scaling ex
nents in turbulent flows when the deviation from the semi
Kolmogorov’s 1941 theory is non-negligible, and the fund
mental resultz351 in the inertial range is not observed.
could be used, for example, in situations where the struc
function does not display any evidence of self-similarity w
l , such as low Reynolds number experiments@12#, or even in
certain nonhomogeneous or nonstationary situations. The
incidence of relative scaling exponents computed at
Reynolds number using ESS with relative scaling expone
computed in the usual inertial range at large Reynolds n
ber tends to support this picture. This therefore suggests
ESS could be a natural analyzing tool when investigat
certain nonstationary or nonhomogeneous situations.
goal of the present contribution is to explore this issue p
tially in inverse 2D energy cascade.

Some limitations of ESS have, however, already been
tected. Stolovitzky and Sreenivasan pointed out that the E
property could be limited to low-order moments@13#. Also,
recent experimental and numerical investigations h
shown that ESS holds in 3D homogeneous and isotropic
bulence both at low and high Reynolds numbers, and fo
wide range of scales. However, ESS is not observed in s
ations when a strong mean shear is present@14#, such as in
boundary layer turbulence and in the shear behind a cylin
@15#. Our investigation of numerical 2D turbulence show
that ESS is also present there. In Fig. 1 we reproduce
comparison between the absolute exponentzp and the rela-
tive exponentzp/z3 in a well-developed inverse energy ca
cade computed in@8# ~the corresponding experiment is calle
R1024F256 in the present paper!. In this experiment, the
energy flux defined in Fourier space is constant in the ra
0.2<k/kI<1, wherekI is the wave number at which forcin
occurs; see@8#. This corresponds to a scale interv
1<l / l I<5, wherel I5p/kI . It is clear that, for low value ofp
~p<6!, the relative scaling exponents in this interval tends
be scale independent. By contrast, the absolute exponen
pends onl . In the light of the previous discussion, this cou
be seen as a little bit surprising, since large scales are d
nated by large vortices generating strong local shear
nonhomogeneous or nonstationary regimes. In tw
dimensional turbulence, where vortex interactions are R
nolds number dependent@16#, the statistical properties o
such regimes are insufficiently known. One goal of t
present contribution is to partially explore this issue. W
shall show that the ESS property is observed in 2D sh
situations.

A goal of the present work is connected with the univ
sality of the scaling exponents. The existence of ESS has
more and more people to focus on ‘‘relative scaling exp
nents’’ such aszp/z3 rather than ‘‘absolute exponents’’ suc
as zp . This interest, first motivated by experimental conv
nience, was increased when it was discovered that the
tive scaling exponents seem to carry a form of universa
absent in the absolute scaling exponents: the same s
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relative exponents was observed in 3D turbulence,
Rayleigh-Benard convection in the Bolgiano regime@17#, in
the solar wind@18#, or in Gledzer, Ohkitami, and Yamad
~GOY! shell models with different hyperviscosities@19#, de-
spite the differences between the absolute scaling expon
These ‘‘universal values’’ are also consistent with the valu
we measured in the 2D inverse cascade energy range@8#.
This could suggest that the relative scaling exponents
pends on the conservation laws, but not on the way the
bulence is produced or dissipated.

Motivated by these remarks, we were led to revisit t
experimental analysis reported in@8# in order to, on the one
hand, unmask the influence of nonhomogeneity, nonstat
arity, and shear in the transfers in the inverse energy cas
of two-dimensional turbulence, and, on the other hand,

FIG. 1. The absolute exponents~a! and relative exponents~b! as
functions of nondimensional scale for increasing values
p52(A), 3(B), 4(C), 6(D), 8(E), 10(F), and 12(G); l I is the
forcing scale.
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55 2695SOME PROPERTIES OF TWO-DIMENSIONAL INVERSE . . .
investigate the role of the third-order structure function
nonlocal, nonhomogeneous, and nonstationary dynam
We therefore consider two extreme cases, namely, a
developed inverse energy cascade in a robust statistic
steady state and the collision of two signlike vortices, a go
illustration of a nonstationary cascade regime. We deve
specific tools and a methodology suitable for the analysis
nonlocal, nonstationary, and/or nonhomogeneous situati
These tools are described in Secs. II and III. We shall sh
that the third-order structure function plays a fundamen
role in the scaling description of the 2D energy cascade
namics. We also determine the physical meaning of the
mally introduced adjustable parameters in She-Leveque@10#
and Dubrulle@9# intermittency models. Numerical exper
ments are described in Sec. IV. Our conclusion follows
Sec. V.

II. ANALYZING TOOLS AND METHODOLOGY

The phenomenological theory suggested by Kolmogo
in 1941 @6# to describe the probability distribution for th
relative velocities in locally homogeneous and isotropic r
dom velocity fields remains one of most robust approache
the experimental and theoretical study of developed turbu
flows. The Kolmogorov-Obukhov approach is founded on
relatively simple quantitative description of cascade p
nomenon in the inertial range in which the turbulence m
be considered locally homogeneous. The basic prediction
the pth-order moment of the velocity incrementdv l at scale
l in the energy inertial range is

^dv l
p&;«0

p/3l p/3, ~3!

where «0 refers the continuous mean transfer from lar
scales to small scales. It is constant in this case throug
the cascade, and equal to the mean dissipation rate in
flow domain;^ & refers to averaging over all position vect
x.

A. Kolmogorov picture and the analysis of turbulence

An important step in the development of relation~3! and
of the locally continuous inertial cascade concept is the
terpretation and discussion about the Landau critical rem
@20# concerning the random nature of the energy dissipat
which is a fluctuating function of the coordinatesx and time.
For insufficient Reynolds number, these fluctuations may
pend on the large-scale motion. The refined Kolmogo
similarity hypothesis@7# transforms relation~3! into

^dv l
p&;^« l

p/3& l p/3; l zp, ~4!

where now«l is the dissipation rate averaged over a spher
volume of radiusl /2 centered inx. Here the scalesl are
defined in the energy inertial range. A basic ingredient in t
phenomenology is the existence of a range of scales~the
inertial range! in which the dissipation and the forcing a
irrelevant, i.e., the probability distribution ofdv l depends
only on the variation of energy per unit time at that scale«l
and on the scalel :

P~dv l !5F~« l ,l !. ~5!
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Indeed, Eq.~5! could also be recast in different way
namely,

dv l
3

^dv l
3&

5
law « l

^« l&
, ~6!

where the symbol5
law

here refers to having the same scali
properties,

X5
law

Y⇒^Xp&;cp^Y
p&, ;p. ~7!

Relation~6! is one consequence of Eq.~4!. However, Eq.~6!
does not necessarily imply relationship~4!. Actually, accord-
ing to Eq. ~4! the absolute exponent for structure functio
are related by

zp5
p

3
1tp/3 , ~8!

wheretp/3 is the scaling of̂ « l
p/3&, and characterizes the in

termittency correction. Clearly, relation~8! guarantees the
basic resultz351 for fully developed, homogeneous, and s
tionary energy cascade. On the other hand, relation~6! we
can deduce that

zp5
p

3
z31tp/3* , ~9!

wheretp* are the scaling exponents of^« l
p/3&/^« l&

p/3. Rela-
tions ~8! and ~9! only coincide if ^«l& is constant. In the
nonhomogeneous situations studied in the present work,
is not necessarily so, and formulation~9! is better adapted.

One important observation is that the refined similar
hypothesis under form~6! does not predetermine the scalin
of third-order structure function. Consequently, relation~6!
may be used in situations in which the constraint imposed
homogeneous, infinite Reynolds number and stationary
sumptions, i.e.,

lim
l→0

lim
n→0

lim
t→0

^dv l
3&
l

52 4
5 ^« l& ~10!

is violated @see@21# for a detailed discussion of Eq.~10!#.
However, we may observe that Eq.~6! is not the only dimen-
sional law compatible with Kolmogorov picture. Relation~6!
was first proposed by Dubrulle@9# to account for ESS in
some situations. However, it bears a potentially dee
meaning: it guarantees that the partial derivative of the pr
ability distribution with respect tol is zero, and then guar
antees the most general requirement for scale symmetr
the probability distribution ofdv l ~for more general discus
sions on the scale symmetry, see, e.g.,@22,23#!. We may then
expect Eq.~6! to hold in a more general context than E
~10!. Indeed, this form of scaling has been observed in m
different flows, from isotropic turbulence to boundary laye
for scales ranging from the integral scales up to the diss
tion range@24#, i.e., far beyond the range of validity of Eq
~10!.
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2696 55BABIANO, DUBRULLE, AND FRICK
This interesting property makes Eq.~6! the best tool for
analyzing flows which are not necessarily homogeneous,
tropic, or stationary, in situations where some form of sc
invariance can be expected. To do that, it will be necess
to define more precisely what is exactly meant by the qu
tity «l in Eq. ~6!. Before that, let us first examine the impl
cation of both similarity hypotheses~4! and~6! to the scaling
zp .

B. Link between transfer and velocity increments

She and Leveque@10# and Dubrulle@9# proposed a simple
model to describe the intermittency phenomenon in fully
veloped 3D turbulence. They predict the scalingzp of
p-order moments of the velocity increments, and their dev
tion from behavior~3!. Their approach is based on the fo
lowing hypotheses:

~i! The moments of the energy transfer satisfy the relat

^« l
p11&

« l
`^« l

p&
;F ^« l

p&

« l
`^« l

p21&G
b

, ~11!

whereb is a positive constant smaller or equal to 1, and« l
`

is a normalizing factor which can then be interpreted as
relative contribution to the transfer of the most intermitte
structures at scalel . The straightforward development fo
p50,1,2,...,p leads to the formula

^« l
p/3&;F ^« l&« l

` G ~12bp/3!/~12b!

« l
`p/3 . ~12!

~ii ! In the She-Leveque model, the quantity^« l&/« l
` is

given by

^« l&
« l

` 5
law «0

« l
` ; l a, ~13!

where«0 refers the continuous mean transfer kept cons
by the mean dissipation rate atl→0 in the flow domain. This
corresponds to a case where^«l& is a scale independent qua
tity and « l

` shows a scale-divergent behavior.
~iii ! In Dubrulle’s model, the quantitŷ« l&/« l

` satisfies
the relationship

^« l&
« l

` ;^dv l
3&g, ~14!

whereg is an adjustable parameter characterizing the deg
of heterogeneity of the transfer field and of the most int
mittent structures participating in the transfers.

The combination of Eq.~12! with Eqs.~4! and~13! or ~6!
and ~14! implies that the scaling exponents of thepth-order
moment of the velocity increment are given by

zp5
p

3
@12a#1a

12bp/3

12b
~15!

in the She-Leveque model~in this casez351 is imposed!,
and by

zp
z3

5
p

3
@12g#1g

12bp/3

12b
~16!
o-
e
ry
-

-

-

n

e
t

nt

ee
-

in the Dubrulle model. The identitya5g is of course guar-
anteed only ifz351.

Hereb andg are adjustable parameters characterizing
specificity of each flow~conservation laws, forcing, degre
of homogeneity!. She and Leveque showed that correcti
~15! is in good agreement with 3D experimental results
ported by Benziet al. @11# for a5b52

3.
Note that, according to Eq.~12!, the deviation from the

linear p/3 behavior in relation~4! is determined for allp by
the value of the adjustable parameterb and the scaling prop-
erties of^«l& and« l

`. If it can be reasonably assumed~as in
fully developed turbulence and in continuous cascade s
nario! that the lower structurê«l& is a scale-independen
quantity kept constant by the mean dissipation atl→0, then
correction~12! is determined byb and« l

` only. This is the
essence of the She and Leveque model. In a more gen
case, Eq.~12! also depends on the degree of homogeneity
the first moment of the transfer rate^«l& and, consequently
on the nonpredetermined scaling properties of^dv l

3&. This
was implicitly considered in an experimental study@8# in
which the ESS property was used in order to obtain a s
nificant improvement in experimental measurements
zp/z3.

As stated in introduction, the existence of ESS may r
resent more than an experimental tool to compute more
cise scaling exponents. In our opinion, it could be viewed
a way to define an ‘‘inertial’’ range, even in situations whe
the exact relation~10! does not necessarily hold. The ma
goal of the present work is to clarify this problem with
formulation~6! and the investigation of the physical meanin
of different parameters asg, b, andz3 in the particular case
of nonlocal 2D inverse cascade process.

C. Transfers in 2D inverse cascade

The discussion about the validity of hypotheses~4! or ~6!
was made in the context of three-dimensional turbulence
two-dimensional turbulence the situation is more comp
cated. The condensation of vorticity and energy into coher
vortices depends both on the existence of the energy inv
ant and on the localness of flow dynamics in physical sp
@3#. These two fundamental properties of two-dimensio
turbulent dynamics are the two most notable ingredients
sent in the seminal Kolmogorov’s theory. They sustain
concept of the nonuniversality of power laws in the enst
phy and energy inertial ranges. This conclusion is confirm
by results for numerical simulations concerning the ens
phy inertial range reporting nonuniversal energy spec
steeper than thek23 spectrum expected in phenomenologic
theory. The problem, however, is less prominent in the
ergy inertial range in which the fate of coherent structu
and their contribution to the energy cascade has not yet b
adequately studied in numerical simulations. In this case,
viscous dissipation at large scales is negligible in the lim
l→`, and the statistically steady state is only achieved by
introduction of external friction in the Navier-Stokes equ
tion. The consequence of external artificial large-scale di
pation to the transfer dynamics in the inverse cascade
analysed by Smith and Yakhot@25#. There are situations
where both the energy and the enstrophy are transferred
ward large scales. Thek25/3 spectrum@which is consistent
with Eq. ~4!# predicted by Kraichnan@26# is observed only in
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55 2697SOME PROPERTIES OF TWO-DIMENSIONAL INVERSE . . .
well-developed forced and dissipated simulations, where
statistically steady state is sufficiently robust@27,28,8#. Re-
cent numerical experiments performed by Borue@29# show,
however, an unexpected behavior of the inverse cascade
namics. These results suggest that there is not much p
bility of reaching any robust steady state, and show
anomalous scaling ink23 for the energy spectrum at larg
scales.

We now return to the interpretation of relation~6!, and its
adaptation to the 2D inverse cascade problem. Relation~6!
means that the third-order velocity structure function and
first moment of the energy dissipation rate have the sa
statistical properties. This statement contains some con
dictions ~see, e.g.,@21#!: first, the right hand side of Eq.~6!
refers to a positive value, while the left hand side can h
any sign; also, the left hand side concerns the pulsation
velocity—a characteristic of the inertial range—and the rig
one deals with the dissipation, which, following the defin
tion of the inertial range, is not important at these scales,
become non-negligible only at dissipative scales.

This problem deserves special consideration. LetVl be a
volume~or a surface, in the 2D case! of scalel , laying in the
inertial range. The variation of kinetic energy per unit ma
in this volume is given by

] tEl52
1

Vl
E
Sl

~v21P!vndS2
1

Vl
E
Vl

«~x!dV

1
1

Vl
E
Vl

q~x!dV. ~17!

HereSl is the surface~or contour! of Vl , «~x! is the rate of
energy dissipation, andq~x! is the rate of energy input by
forcing; vn is the normal component ofv to the surface ele-
ment ~or contour element! dS. Thus

] tEl52s l2« l1ql , ~18!

where«l andql are positive, andsl can be positive or nega
tive.

Let «l be a fluctuating function of the coordinatesx and
time,

« l5«01« l8 , ~19!

andql5q0 a homogeneous and stationary forcing;«0 is the
mean dissipation rate, and in any stationary case mus
equal toq0. Thus

] tEl52s l1~q02«0!2« l8 , ~20!

where bothsl and « l8 are sign-changing, scale-depende
values. Note thatsl is a true inertial range quantity and, in
local dynamics, the latter term concerns the processes o
ating out of inertial range scales. This description rema
true in a 2D inverse cascade process. In this case, the dy
ics is nonlocal, and«l may be negligible.s l5(1/Vl)*Sl(v

2

1P)vndS, the physical-space energy flux through the s
faceSl , is the most important characteristic of the casca
process, especially when the large-scale friction is negligi

The previous discussion therefore suggests interpre
the quantity«l appearing in Eq.~6! as sl , which is a true
e

y-
si-
n

e
e
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e
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t
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inertial range quantity in local or nonlocal dynamics. No
that this quantity is defined in physical space, and is the
fore better suited for investigations in nonhomogeneous s
ations than the energy flux defined, e.g., in Fourier spac

In our analysis we shall therefore consider that the pr
ability distribution in physical space for the relative veloc
ties in 2D cascade dynamics is basically determined by
absolute contribution to the transfer of the nonlinear term
the Navier-Stokes equation. That is,

h l5us l u. ~21!

With this choice, relations~5! and ~6! may be rewritten as

P~ udv l u!5F~h l ,l ! ~22!

and

udv l u3

^udv l u3&
5
law h l

^h l&
. ~23!

Note that absolute values of the velocities increments m
be chosen to guarantee the consistency of Eqs.~22! and~23!,
becausehl is the absolute value of energy~or enstrophy! flux
through the control surface at scalel . Our choice of the ab-
solute value is essential. Indeed, we assume that^hl& con-
tains both the stationary continuous part of the transfer fr
one scale to another~which will then be the same throughou
in the inertial range, and equal to the dissipation rate or fo
ing rate! and a secondary ‘‘parasite’’ scale-dependent loc
ized conservative flux related to the internal shape and
distribution of the structures participating to the transfe
We interpret the ‘‘continuous’’ part of the inverse energ
transfer as a formation of stable large-scale structures, w
the ‘‘parasite’’ loops correspond to unstable large-sc
structures which decay back. We can assume that the rela
number of unstable structures increases with the Reyn
number. This means that the dynamics of the cascade
cess becomes nonlocal, and depends on larger scales. T
the absolute value enables us to take into account b
above-mentioned contributions, which we believe are b
important in determining the shape of the structure functio
i.e., of the probability distribution functionP(udv l u).

Of course, the scaling properties of relations~6! and~23!
are equivalent only in the case where:

^dv l
p&5

law

^udv l up&. ~24!

This is not true in general@30,31#. We show in Sec. IV A
that Eq.~24! is well satisfied forp53, but becomes increas
ingly erronate for larger odd values ofp. This shows that our
methodology is not strictly equivalent to the model dev
oped by Dubrulle@9#, and might be considered a new ph
nomenology. Note that the good agreement between
model of She and Le´veque and experimental results was o
tained using the absolute value of velocity increments, wh
justifies our phenomenology from another point of view.

We may also observe that, in the 2D incompressible ca
a similar argumentation could be developed for the variat
of the enstrophy per unit mass, in which casehl would be
defined in term of the flux of the square vorticityv2 rather
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than in term ofv21P. Dimensionally, relation~6! is un-
changed whether one considers«l ashl defined in term of
velocity or vorticity. The adoption of one or the other pr
scriptions depends whether one considers that energy o
strophy transfers determine the dynamics. In 2D, there co
be some ambiguity. We have, therefore, tried both presc
tions. They both appeared to give similar results, but res
obtained with the vorticity were slightly less noisy, so w
adopted the vorticity prescription. The difference could
induced by the numerical procedure computingv from v,
since we only solved the barotropic vorticity equatio
Therefore, in our experimental investigation, we will defi
hl as

h l5
1

l 2 U ESlv2vndlU, ~25!

wherevn is the normal component ofv to the elementdl of
the contourSl containing the control surface at scalel cen-
tered onx. For fixed t, we obtained a distribution of value
for hl depending on the position where it is taken. Avera
values can then be obtained by averaging over all posi
vectorsx.

III. TRANSFER HIERARCHY IN 2D TURBULENCE

We investigate the properties of the transfers by con
ering the ‘‘absolute transfer’’ hierarchŷh l

p11&/^h l
p&. It is

bounded by two limitsh l
0 andh l

` defined as

h l
05 lim

p→0

^h l
p11&

^h l
p&

5^h l&, ~26!

h l
`5 lim

p→`

^h l
p11&

^h l
p&

. ~27!

The quantityh l
0 is equivalent to the mean absolute ener

flux, while h l
` characterizes the relative contribution of th

most intermittent structures at scalel . Let us now define the
following local scaling exponents:

d052
d lnh l

0

d lnl
, ~28!

d`52
d lnh l

`

d lnl
. ~29!

In the inertial range~if any!, these two exponents are co
stant. In the following discussion, it is not necessarily so

For any values ofp, we can parametrize the evolution o
the hierarchy as function ofp and l as

dp52
d ln^h l

p11&2d ln^h l
p&

d lnl
, ~30!

wheredp is again a local exponent obeying

dp5d`1~d02d`!h~p!, ~31!

andh(p) is a monotonous decreasing positive function op
smaller or equal to 1, which, in general, may depend jus
n-
ld
p-
ts

e

.

e
n

-

s

well on ~d02d`!. The parametrization~31! requires thath(p)
goes to 1 whenp goes to 0, andh(p) goes to 0 whenp goes
to `.

A. Interpretation of d0 and d`

The measurement ofd0 andd` provides interesting infor-
mation about the internal shape and spatial repartition of
structures responsible for the transfer. By definition,h l

`

characterizes the scaling properties of the structures res
sible for the largest, but rarest, transfer. For example, if th
structures have a scale-independent shape,d`50; if they are
very localized structures of characteristic size much sma
than any inertial range scale~e.g., very thin lines extending
on scales smaller than the inertial scale!, they can be ap-
proximated by Dirac functions, andd`5D, whereD is the
space dimension~here D52!; if they behave like a self-
similar singularity with exponenta, thend`5a; if they are
‘‘regular’’ structures~not scale divergent!, thend`<0.

By contrast,d0 characterizes the structure responsible
the smallest~close to zero! but most frequent transfer. I
depends both on the shape and the spatial repartition of t
structures. For example, if they are small isolated Di
peaks,d05D. This is a very inhomogeneous situation.
more homogeneous situation can be obtained with sp
filling scale-independent structures. In this case,d050.

Note that when the transfer is due to only one type
isolated structures,d05d` . This is also a nonhomogeneou
situation, but it leads to a nonintermittent situation for t
velocity structure functions.

We may then single out four special cases:~i! Case A:
d05d`50; the transfers are constant and nonintermitte
This situation is the ideal situation considered byK41. ~ii !
Case B:d0Þ0 andd`5d0; the base of the hierarchy is sta
tistically nonhomogeneous, but the degree of nonhomoge
ity does not increase withp. This is a nonhomogeneous an
nonintermittent case.~iii ! Case C:d050 andd`Þd0; the base
of the hierarchy is statistically homogeneous, but there
intermittency. This situation corresponds to theK62 situa-
tion. ~iv! Case D:d0Þ0 andd`Þd0; both nonhomogeneity
and intermittency prevail. This represents a maximal dev
tion from theK41 hypothesis.

B. Interpretation of h„p…

Relations ~30! and ~31! involve the hierarchŷ h l
p11&/

^h l
p& and the scaling limitsd0 and d` for all p. The factor

~d02d`! is linked to the maximum of amplitude of the inte
mittency phenomenon in each turbulent flow, whereash(p)
refers to the corresponding correction as function ofp.
Clearly, if h(p)51 for all p, the correction introduced by Eq
~31! comes only from the basic properties of^hl&.

The simplest function which satisfies the constraints
h(p) is

h~p!5e2ap, ~32!

wherea5h8(0) characterizes the steepness ofh(p) at p50,
i.e., the properties of the transfer hierarchy at moderate
ues ofp. Using Eq.~31!, the first derivativeh8~0! is defined
by dp8(0). Weobtain
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a5
dp8~0!

d`2d0
. ~33!

Clearly, sincedp8(0)>0, we havea>0.
On the other hand, simple manipulation shows that,

every valuesd`Þd0, hierarchies~30! and ~31! verifies the
relation

^h l
p11&

h l
`^h l

p&
;F ^h l

p&

h l
`^h l

p21&G
h~p!/@~p21!#

~34!

Note that, ifd`5d0 ~or d`→d0!, thenh(p)/h(p21)51 @or
h(p)/h(p21)→1#. We see that Eq.~34! is consistent with
the hierarchy~11! postulated by She and Leveque@10#, pro-
vided thath(p) have been defined in the frame of the a
proximation~32!. That is,

h~p!

h~p21!
5b5e2a, ~35!

both scale andp independent. Here the physical meaning
the adjustable parameter in intermittency models@10# and@9#
b is established: under assumption~32!, b is determined by
Eqs.~33! and ~35!.

Dubrulle @9# and She and Waymire@32# showed that re-
lation ~11! with constantb holds when the probability den
sity function for «l is a log-Poisson distribution~see, for
example,@33# for experimental discussion in the shell mo
els!. We see that this is, strictly speaking, a simplifying a
sumption which results only from the approximations~32!
and ~35!. In this sense, the log-Poisson model is only t
simplest modelization of the hierarchy. More complex hi
archies result in nonconstanth(p)/h(p21) ~see examples in
@32,22# or in Sec. IV!. Note, however, that for large enoug
the hierarchy^h l

p11&/^h l
p& saturates toward the limith l

`.
According to Eqs.~32! and ~33!, finally, we see that the
adjustable parameterb in the simplest approximation~log-
Poisson distribution! is defined byh8~0!, d0, and d` . The
property thatb may be universal in the frame of given co
servation laws in nonhomogeneous and/or nonstation
situations is therefore not guaranteed.

C. Achievement of ESS

We can now establish the link between absolute tran
and velocity increments. From hierarchies~30! and~31!, the
straightforward development forp50,1,2,...,p leads to the
formula

^h l
p&

^h l&
p ; l ~d`2d0!@ I ~p!2p#, ~36!

whereI (p) is the function

I ~p!5 (
q50

p21

h~q!. ~37!

If Eq. ~23! holds, the exponents of the absolute veloc
structure functions

^udv l up&; l zp* ~38!
r

-

f

-

-

ry

er

can be expressed using the functionsI (p), d0, andd` intro-
duced above. They are

zp*

z3*
5
p

3 F12
~d`2d0!

z3*
G1

~d`2d0!

z3*
I ~p/3!, ~39!

For example, assuming the simplest approximat
h(p)5bp andI (p)5(12bp)/(12b), one recovers formula
~16! applied to exponents of the absolute velocity inc
ments. The important observation is that formula~39! for the
relative scaling exponentszp* /z3* is obtained without the ESS
assumption~1!. We see that the relative exponents only d
pends onI (p) and on the statistical properties of the quant

D[
~d`2d0!

z3*
. ~40!

The scale independence of the relative exponents, i.e., E
is guaranteed, provided only bothI (p) andD are scale inde-
pendent. The first property is linked with the existence o
well-defined ‘‘hierarchy.’’ The second property has been o
served, for example, in well developed 3D isotropic turb
lence, Rayleigh-Benard convection@24#, or in shell models
with hyperviscosities@19#. In all these cases,D appears to be
about two-thirds, predicted by She and Leveque@10#. A fit
with experimental measurements of Benziet al. @11# gives
D50.82 @36#. In systems with different conservation law
such as shell models@33# or in the 2D enstrophy cascade@8#,
D is different from this value. In the enstrophy cascadeD'0
~no intermittency!, but in the inverse energy cascade, w
found D'0.47 @8#. From all these experimental results on
may speculate thatD appears as a universal quantity~i.e.,
independent of the mean dissipation, flow geometry, stat
arity, or homogeneity! in the energy cascade range. IfD is a
universal scale-independent quantity in the energy ran
identity ~40! justifies the universality of the relationship

^udv l u3&;S h l
0

h l
`D 1/D, ~41!

which is consistent with the Dubrulle’s assumption~14! if
^dv l

3& and ^udv l u
3& have same scaling properties. The inte

esting conclusion is that the ESS property is generica
linked with the validity of relationship~41! in the inertial
range. Note that the universality ofD does not implie in
precise way the universality of the relative scaling exp
nents. They also depend on the complexity ofI (p).

Relation~41! may be rewritten as

^udv l u3&
l

;«0S ll I D
~d`2d02D!/D

, ~42!

where«0 is the input rate at scalel I . If ^dv l
3&5

law

^udv l u3&, this
relation appears as a generalization~to nonhomogeneous
situations! of both K41 and K62 phenomenology based
the exact result~10! valid for locally homogeneous and sta
tionary turbulence. In the first case,d`5d050 andD50; in
the second case,d050 andd`5D, so that both formulas lead
to z3*51. Otherwise,d0Þd`Þ0, and we observe that Eq
~42! tends to exact result~10! only if ~d`2d0! tends toD.
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2700 55BABIANO, DUBRULLE, AND FRICK
It is therefore interesting to evaluate the behaviors ofD,
I (p), and ~d`2d0! in various nonhomogeneous or nons
tionary situations, with given conservation laws. In Sec.
we present an experimental study ofD, I (p), and~d`2d0! in
different 2D energy cascade situations, namely, a statistic
steady well-developed energy cascade and a nonstatio
vortex interaction.

IV. EXPERIMENTAL RESULTS

We use the classical simulation of stationary incompre
ible two-dimensional turbulence solving the barotropic v
ticity equation on a periodic square domain~2p,2p!, using a
pseudospectral scheme. We consider some experim
which were already analyzed in@8#:

~i! An experiment at a resolution of 172831728 with a
forcing at wave numberkI540. In this simulation, both the
inverse cascade of energy and direct cascade of enstr
can be studied~experiment R1728F40!.

~ii ! An experiment at a resolution 102431024 with a forc-
ing at a large wave numberkI5256. This simulation present
a well-developed inverse cascade of energy~experiment
R1024F256!.

~iii ! An experiment at a resolution 1283128 unreported in
@8#, with a forcing at wave numberkI510. This simulation
does not present any signature of a developed inverse en
cascade, and will be used to analyze the interaction of
same sign vortices~experiment R128F10!.

Here we consider a situation in which the tw
dimensional incompressible turbulence is forced by a stat
ary force whose spectrum is concentrated in a neighborh
of the wave numberkI , and in which a robust statisticall
steady state is reached: the forcing which is defined by ke
ing the amplitude of the modekI constant in time is compen
sated for by the dissipation at small and large scales. In
our simulations, a linear friction at largest scales was used
R1728F40 and R128F10 experiments, the dissipation
small scales was parametrized by the hyperviscosity met
In the R1024F256 experiment, where the cutoff scale is
the order of the input scale, the anticipated potential vortic
method was used@34#. The energy spectra are displayed
Fig. 2 ~other information concerning these simulations a
more extensive analysis of corresponding energy spectra
ergy, and enstrophy fluxes in Fourier space, and struc
functions characterizing these fields, can be found in
previous studies@8,28,35#!. The vortex interaction is ana
lyzed in the R128F10 experiment in a 41341-grid-interval
subdomain~i.e., 2.2 times the most energetic scales! centered
on one of the vortices. The motion of the subdomain is
perimentally studied with a Lagrangian monitoring of t
vortex epicenters. The vortex interaction is a nonstation
turbulent event. The Reynolds numbers in these simulat
are close to 800~R1728F40!, 500 ~1024F256!, and 60
~R128F10!. In all three turbulent fields coherent structur
are present.

A. Transfer hierarchy: Stationary state

Here we analyze the high-resolution simulatio
R1728F40 and R1024F256 in the statistically steady state
the R1728F40 experiment both the energy and enstro
cascades are resolved. We observe a close tok25/3 andk23.5
-
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spectra in the energy and enstrophy ranges, respectivel
the R1024F256 experiment, a well-developedk25/3 inverse
cascade of energy is resolved.

1. Comparison betweenŠdv l
p
‹ and Šzdv l z

p
‹

We have performed a comparison between^dv l
p& and

^udv l u
p& for odd valuesp51, 3, 5, and 7. The result is dis

played in Fig. 3. It can be seen that the scaling propertie
the two quantities nearly coincide forp53 in large interval,
but increasingly differ forp.3. This shows thatz35z3* , but
zpÞzp* for p.3.

2. Transfer hierarchy

The experimental illustration of the transfer hierarc
^h l

p11&/^h l
p& as a function of nondimensional sca

FIG. 2. Energy spectra as function of wave numberk. Arrows
indicate the injection wave numberkI and the most energetic wav
number kE ; experiments R1728F40~a!, R1024F256 ~b!, and
R128F10~c!.
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l / l I ( l I5p/kI) for increasing values ofp ~up to p512! is
reported in Figs. 4~a! ~R1728F40! and 4~b! ~R1024F256!. It
is quite clear that formulations~30! and ~31! is well sup-
ported. From Fig. 4~a! we observe two different scalin
properties of the transfer hierarchy as a function ofl andp.
In the enstrophy range~l / l I<1!, the hierarchy shows a be
havior which is consistent with case B described in Sec.
namely,̂ hl& is statistically nonhomogeneous~d0Þ0!, and the
degree of nonhomogeneity does not increase withp~d`'d0!.
This result confirms the weak degree of intermittency ch
acterizing the direct enstrophy cascade dynamics in the
bust stationary situation@8#. Note also that the scaling of th
transfer hierarchy is close tol21 ~d0'1! and that the case
d`5D is not reached in this range. It thus seems that the v
crude growth ofp preserves the repartition of rarest a
frequent transfer in the enstrophy cascade.

FIG. 3. Comparison between̂dv l
p& and ^udv l u

p& for p51(A),
3(B), 5(C), and 7(D); experiments R1728F40~a! and R1024F256
~b!.
II

r-
o-
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In the energy interval~l / l I>1!, we observe a very differ-
ent behavior with a strong sensitivity of the hierarchy sha
for moderate values ofp. For p50, the underlying shape is
l24/3 ~d0'

4
3!. As p increases, the slope rapidly converges to

strongly nonhomogeneous situation characterized byd`5D
~isolated Dirac peaks!. This process in the energy interva
corresponds to case D described in Sec. III, and is as
confirmed by the R1024F256 experiment@Fig. 4~b!#. We see
that in both simulations the underlying shape is characteri
by d0'

4
3, and the strongly nonhomogeneous threshold

d`5D.

3. Behaviors ofD, (d`2d0), and z3*

The experimental illustration of the behaviors ofD,
~d`2d0!, andz3* as function of nondimensional scalel / l I in
the well-developed inverse energy cascade F1024R256 i
ported in Fig. 5. According to the spectrum behavior ink25/3,
the exponentz3* remains close to 1 forl / l I>1 ~it tends to 3
whenl / l I→0, see@2#!. We observe that the scale dependen
of z3* and ~d`2d0! remains correlated throughout the who
energy interval 1<l / l I<5 resolved in this experiment. As

FIG. 4. The transfer hierarchy as function of nondimensio
scale forp50(A), 1(B), 2(C),...,12(M ); experiments R1728F40
~a! and R1024F256~b!.
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2702 55BABIANO, DUBRULLE, AND FRICK
result,D appears as scale-independent quantity in well de
oped and stationary inverse cascade dynamics. From F
we may conclude that the value ofD is between 0.7 and 0.8
as in the fit performed in@36# for three-dimensional turbu
lence, but slightly above the value23 from the model of She
and Leveque.

4. Relative exponents

The only difference between the two behaviors for t
hierarchŷ h l

p11&/^h l
p& in the energy range~Fig. 4! is that in

R1024F256 experiment the value ofd8~0! is smaller than in
R1728F40 experiment, in spite of the fact that in both ca
we observe identical underlying shaped0 and strongly non-
homogeneous thresholdd` . The measured values ofdp , the
parametera defined by Eq.~33!, and the corresponding
b5e2a in the log-Poisson approximation can be found
Table I. In the R1728F40 experiment,d 8~0!50.93 ~b50.3!,
whereas, in the R1024F256 experiment,d 8~0!50.2 ~b50.7!.

This experimental observation indicates th
h(p)/h(p21)5(dp2d`)/(dp212d`) depends onp, and
that functionsh(p) and I (p) do not only depend on the
conservation laws. In this case, the parameterb in the log-
Poisson approximation appears as a nonuniversal quan
One may then question whether, under such conditions,
log-Poisson approximation indeed has any practical sign
cance.

B. Transfer hierarchy: Nonstationary regime

As pointed out in@1# and@3#, the collision of two vortices
of the same sign, which produces a coalescence into a s

FIG. 5. The behaviors ofD (A), ~d`2d0! (B), andz3* (C) as
functions of nondimensional scale; experiment F1024R256.

TABLE I. Measured values ofdp , a, andb.

Experiment d0 d1 d2 d3 d4 d5 d6 a b

R1728F40 1.3 2.23 2.2 2.1 2 2 2 1.281 0.2
R1024F256 1.4 1.6 1.66 1.7 1.7 1.8 2 0.333 0.7
R128F10~i! 1.25 1.95 2 2 2 2 2 0.933 0.39
R128F10~ii ! 0.7 1.95 2 2 2 2 2 0.961 0.38
l-
. 5

e
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vortex, is a clear illustration of the inverse energy casca
The two interacting vortices turn around each other, gett
closer and closer until they finally aggregate in a vortex.
the nonstationary regime, the resulting vortex has a lar
scale than two incident vortices. Conversely, if the exter
constraints~forcing and dissipation! generate a robust stead
state, then after some relaxation time the vortex tends
recover the scale of incident vortices. This process ha
nonstationary character. The various panels of Fig. 6 sh
the vorticity levels in a 41341 grids interval subdomain dur
ing a typical collision of two vortices of the same sign~ex-
periment R128F10!. Figure 7 shows the enstrophy~a! ~aver-
aged in the 41341 grid interval subdomain! and the integral
P5*^h l&dl defined over energy cascade scales~b! as func-
tion of time. During the collision of two vortices~2.3,t
,2.4! these quantities increase to a maximum value, a
after a transient regime they become stabilized around a
tionary value. The energy and enstrophy were thus norm
ized by the stationary values in the steady state, nam
E553 andZ52500, respectively, in the R128F10 expe
ment. The maximum of the enstrophy in the Fig. 7~a! defines
a local eddy-turnover times close to 0.028. From our exp
mental study we may estimate that the length of the collis
of two vortices is close to 11 local eddy-turnover times. P
scribing the forcing scale to be 50 km and the mean kine
energy to be 12.5 cm2 s22 ~the ocean dynamics parameter
for example! we obtain the time-scale factort15330 days
and the space-scale factorl15159 km. We may estimate tha
the length of this nonstationary inverse cascade reg
linked to the collision of two vortices in the ocean context
close to 100 days.

We shall illustrate our analysis in two different contex
~i! a time-averaged computation in all stationary interval 2
,t,3.3; and~ii ! a time-averaged computation aroundt52.4,
which we may consider the most active episode characte
ing the collision of two vortices.

1. Transfer hierarchy

Figures 8~a! and 8~b! show the transfer hierarchy as fun
tion of nondimensional scalel / l I( l I5p/kI) for increasing
values ofp ~up top512! in the cases defined above. Case~i!
is showed in Fig. 8~a!. We indeed recover in this elementa
event the same basic properties already unmasked in h
resolution simulations and well-developed cascade dyn
ics, namely,d0'

4
3 andd`5D. Clearly, in this case, the en

ergy interval is very short.
Case~ii ! is shown in Fig. 8~b!. We see that the threshol

d` remains unchanged, whereas the underlying shaped0 de-
crease from4

3 to a value close to 0.7 during the most acti
episode characterizing the collision of two vortices. Th
shows that parameterd` is a stationary function at times, i.e
during the interaction of two vortices, the repartition of rare
but largest transfer is stationary. In contrast,d0 may change
in time. It seems that the vortex interaction tends to fav
locally the homogeneous repartition of the smallest but m
frequent transfers at energy cascade scales~d0→0!.

2. Behaviors ofD, (d`2d0), and z3*

What is the evolution ofD in this case? Figure 9 showsD,
~d`2d0!, andz3

* in computation~ii !. The value ofz3* in the
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FIG. 6. Time evolution of the vorticity levels during the collision of two vortices of the same sign in a 41341 grid interval subdomain
for the R128F10 experiment. The images correspond to the timest52.3, 2.35, 2.38, 2.39, 2.5, and 2.8.
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short developed energy interval 1<l / l I<1.3 is in this case
close to 1.6. However, this anomalous large value ofz3* is
compensated for by~d`2d0!, andD remains unchanged an
close to the value between to 0.7 and 0.8 observed in
stationary situation~see Fig. 5!. This result does not implies
in general way the universality ofD. The interesting obser
vation is thatD appears as a scale-independent station
function at time in the energy interval as the nonhomo
neous thresholdd` . This shows that the scaling properties
he

ry
-

^udv l u
3& andd0 remain correlated in time, even if the evolu

tion of the turbulence have a nonhomogeneous and non
tionary character.

3. Relative exponents

Figure 10 shows the comparison between the relative
ponentszp* /z3* for p52, 4, and 6 as function of nondimen
sional scalel / l I in the stationary passive period@case~i!# and
in the nonstationary regime during the collision of two vo
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tices @case~i!#. We observe in case~ii ! that the collision
favors the definition of the relative exponents in a larg
interval l / l I.1, and ESS is present in the same way forp56.
In spite of the low Reynolds number, this is probably co
sistent with the fact that the vortex interaction tends to m
the mean transfer more homogeneous. By contrast, in cas~i!
ESS is present only forp52. Note that the important result i
that the relative exponents in these two different situati
are comparable in spite of the fact that~d`2d0!~i!
Þ~d`2d0!~ii ! . This confirms the low variability ofD as func-
tion of time and of the spatial repartition of the structur
responsible for the smallest but most frequent transfers.

Finally, the measured values ofdp , the parametera de-
fined by Eq. ~33!, and the correspondingb5e2a can be
found in Table I. Note that, in both experiments,a50.933~i!
and 0.961~ii !, b50.393~i! and 0.382~ii !, and h(p)/
h(p21)5(dp2d`)/(dp212d`) do not depend onp.

V. CONCLUSION

Here we summarize our main results: a self-consis
methodology, generalizing Kolmogorov’s approach, h
been developed to study nonhomogeneous and/or nonsta

FIG. 7. The enstrophy~a! and the transfer integralP5*^h l&dl
~b! during the collision of two vortices; experiment R128F10.
t
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ary turbulent situations. This methodology also includes
She and Leveque and Dubrulle intermittency models, a
provides a physical interpretation of the parameters app
ing in these models. It has been applied on two cases dr
from 2D turbulence: in the inverse energy cascade regi
where the presence of strong vortices induces a nonhom
neous situation, and in the interaction of two vortices, a no
stationary situation.

Our analysis has revealed a number of interesting fac
~i! The limits of the log-Poisson description; in th

present case, it appears unsupported even in the statio
regime. It could therefore be a peculiarity of homogeneo
situations.

~ii ! The existence of a scale-independent stationary
rameterD, connected with the existence of ESS. This para
eter, including the influence of inhomogeneities and casc
properties, seems to depend mostly on conservation laws
not on the existence of an inertial range ‘‘a la Kolmogorov
~z351!, nor on the presence of inhomogeneities or on no
stationary effects. These properties ofD open possibilities

FIG. 8. The transfer hierarchy as function of nondimension
scale forp50(A), 1(B), 2(C),...,12(M ); ~a! stationary interval
@case ~i!#, ~b! nonstationary regime@case ~ii !#. Experiment
R128F10.
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regarding the phenomenological description of the tw
dimensional turbulent dynamics, and suggest an interes
interpretation of some unexpected results of the numer
simulations mentioned previously. For example, we have
served that vortex interactions tend to make the mean tr
fer more homogeneous~d0→0!, while keeping unchanged
the structure of the rarest events~d`5cte52 anda→1!. In
the extreme situation of a large-scale structure made onl
interacting vortices, one may then expectd0'0, d`52, and
b50.37. SinceD does not depend on nonstationary effec
D'0.7. From Eqs.~40! and~39!, z3'3 andz2'2, i.e., ak23

energy spectra in the inverse cascade as in Borue’s nume
experiments@29#.

~iii ! The nonuniversality of relative scaling exponen

FIG. 9. The behaviors ofD (A), ~d`2d0! (B), andz3* (C) as
functions of nondimensional scale during the collision of two v
tices; experiment F128R10@case~ii !#.
,

li

ys
-
ng
al
-
s-

of

,

cal

,

due the nonuniversality of the transition from mean to rar
transfer events.

Finally, the universality ofD is generically linked with
relationship~42!, which appears as a generalization to no
homogeneous and nonstationary turbulence of the cla
Kolmogorov’s approach. The analysis developed in t
work is basically supported by specific properties of nume
cal experiments. The other problem is the investigation
our methodology in laboratory orin situ experiments or in
the framework of 3D turbulent dynamics.

-

FIG. 10. The relative exponents as function of nondimensio
scale for increasing values ofp52(A), 4(B), and 6(C); ~a! case
~i!, ~b! case~ii !. Experiment R128F10.
e,

b-

-
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